Parallel Particle Swarm Optimization on Graphical Processing Unit for Pose Estimation

نویسندگان

  • VINCENT ROBERGE
  • MOHAMMED TARBOUCHI
چکیده

In this paper, we present a parallel implementation of the Particle Swarm Optimization (PSO) on GPU using CUDA. By fully utilizing the processing power of graphic processors, our implementation provides a speedup of 215x compared to a sequential implementation on CPU. This speedup is significantly superior to what has been reported in recent papers and is achieved by a few simple optimizations we made to better adapt the parallel algorithm to the specific architecture of the NVIDIA GPU. Next, we apply our parallel PSO to the problem of 3D pose estimation of a bomb in free fall. We reduce the computation time of the analysis of 120 images to about 1 s, representing a speedup of 140x compared to the sequential version on CPU. Key-Words: CUDA, graphic processing units, particle swarm optimization, parallel implementation, 3D pose estimation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Fast Feature-Less Quaternion-based Particle Swarm Optimization for Object Pose Estimation From RGB-D Images

We present a novel quaternion-based formulation of Particle Swarm Optimization for pose estimation which, differently from other approaches, does not rely on image features or machine learning. The quaternion formulation avoids the gimbal lock problem, and the objective function is based on raw 2D depth information only, under the assumption that the object region is segmented from the backgrou...

متن کامل

Real-time multiview human pose tracking using graphics processing unit-accelerated particle swarm optimization

This paper describes how to achieve real-time tracking of 3D human motion using multiview images and graphics processing unit (GPU)-accelerated particle swarm optimization. The tracking involves configuring the 3D human model in the pose described by each particle and then rasterizing it in each 2D plane. The Compute Unified Device Architecture threads rasterize the columns of the triangles and...

متن کامل

Multi-View Human Body Pose Estimation with CUDA-PSO

The authors formulate the body pose estimation as a multi-dimensional nonlinear optimization problem, suitable to be approximately solved by a meta-heuristic, specifically, the particle swarm optimization (PSO). Starting from multi-view video sequences acquired in a studio environment, a full skeletal configuration of the human body is retrieved. They use a generic subdivision-surface body mode...

متن کامل

ACO-PSO Optimization for Solving TSP Problem with GPU Acceleration

In this paper, we present a novel approach named "ACO-PSO-TSPGPU" to run PSO and ACO on Graphical Processing Units (GPUs) and applied to TSP (Parallel-PSO&ACO-A-TSP). Both algorithms are implemented on GPUs. Well-known benchmark problems for many heuristic and meta heuristic algorithms presented by Travelling Salesman Problem (TSP) are known as NP hard complex problems.TSP was investigated usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012